864 research outputs found

    Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations <br>Part I: Surface fluxes

    No full text
    International audienceA mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation

    Leptogenesis in SO(10) models with a left-right symmetric seesaw mechanism

    Full text link
    We study leptogenesis in supersymmetric SO(10) models with a left-right symmetric seesaw mechanism, including flavour effects and the contribution of the next-to-lightest right-handed neutrino. Assuming M_D = M_u and hierarchical light neutrino masses, we find that successful leptogenesis is possible for 4 out of the 8 right-handed neutrino mass spectra that are compatible with the observed neutrino data. An accurate description of charged fermion masses appears to be an important ingredient in the analysis.Comment: Submitted for the SUSY07 proceedings, 4 pages, 9 figure

    Cantilever-based Resonant Microsensors with Integrated Temperature Modulation for Transient Chemical Analysis

    Get PDF
    This work introduces a resonant cantilever platform with integrated temperature modulation for real-time chemical sensing. Embedded heaters allow for rapid thermal cycling of individual sensors, thereby enabling real-time transient signal analysis without the need for a microfluidic setup to switch between analyte and reference gases. Compared to traditional mass-sensitive microsensors operating in steady state, the on-chip generation of signal transients provides additional information for analyte discrimination

    Réadaptation : du bon usage des concepts en MPR

    Get PDF

    Entanglement storage in atomic ensembles

    Full text link
    We propose to entangle macroscopic atomic ensembles in cavity using EPR-correlated beams. We show how the field entanglement can be almost perfectly mapped onto the long-lived atomic spins associated with the ground states of the ensembles, and how it can be retrieved in the fields exiting the cavities after a variable storage time. Such a continuous variable quantum memory is of interest for manipulating entanglement in quantum networks

    Continuous variable entanglement using cold atoms

    Full text link
    We present experimental demonstration of quadrature and polarization entanglement generated via the interaction between a coherent linearly polarized field and cold atoms in a high finesse optical cavity. The non linear atom-field interaction produces two squeezed modes with orthogonal polarizations which are used to generate a pair of non separable beams, the entanglement of which is demonstrated by checking the inseparability criterion for continuous variables recently derived by Duan et al. [Phys. Rev. Lett. 84, 2722 (2000)] and calculating the entanglement of formation [Giedke et al., Phys. Rev. Lett. 91, 107901 (2003)]

    Understanding the production of dual BEC with sympathetic cooling

    Full text link
    We show, both experimentally and theoretically, that sympathetic cooling of 87^{87}Rb atoms in the ∣F=2,mF=2>|F=2,m_F=2> state by evaporatively cooled atoms in the ∣F=1,mF=−1>|F=1,m_F=-1> state can be precisely controlled to produce dual or single condensate in either state. We also study the thermalization rate between two species. Our model renders a quantitative account of the observed role of the overlap between the two clouds and points out that sympathetic cooling becomes inefficient when the masses are very different. Our calculation also yields an analytical expression of the thermalization rate for a single species.Comment: 3 figure

    Guided Quasicontinuous Atom Laser

    Full text link
    We report the first realization of a guided quasicontinuous atom laser by rf outcoupling a Bose-Einstein condensate from a hybrid optomagnetic trap into a horizontal atomic waveguide. This configuration allows us to cancel the acceleration due to gravity and keep the de Broglie wavelength constant at 0.5 μ\mum during 0.1 s of propagation. We also show that our configuration, equivalent to pigtailing an optical fiber to a (photon) semiconductor laser, ensures an intrinsically good transverse mode matching.Comment: version published in Phys. Rev. Lett. 97, 200402 (2006

    Sorption-induced Static Bending of Microcantilevers Coated with Viscoelastic Material

    Get PDF
    Absorption of a chemical analyte into a polymercoating results in an expansion governed by the concentration and type of analyte that has diffused into the bulk of the coating. When the coating is attached to a microcantilever, this expansion results in bending of the device. Assuming that absorption (i.e., diffusion across the surface barrier into the bulk of the coating) is Fickian, with a rate of absorption that is proportional to the difference between the absorbed concentration and the equilibrium concentration, and the coating is elastic, the bending response of the coated device should exhibit a first-order behavior. However, for polymercoatings, complex behaviors exhibiting an overshoot that slowly decays to the steady-state value have been observed. A theoretical model of absorption-induced static bending of a microcantilever coated with a viscoelastic material is presented, starting from the general stress/strain relationship for a viscoelastic material. The model accounts for viscoelasticstress relaxation and possible coating plasticization. Calculated responses show that the model is capable of reproducing the same transient behavior exhibited in the experimental data. The theory presented can also be used for extracting viscoelasticproperties of the coating from the measured bending data

    Some discussions on the Read Paper "Beyond subjective and objective in statistics" by A. Gelman and C. Hennig

    Full text link
    This note is a collection of several discussions of the paper "Beyond subjective and objective in statistics", read by A. Gelman and C. Hennig to the Royal Statistical Society on April 12, 2017, and to appear in the Journal of the Royal Statistical Society, Series A
    • …
    corecore